
1. Introduction
Tropical cyclones (TCs) are among Earth's most potent natural hazards affecting life and property. There is much 
interest in how these storms will change as a consequence of anthropogenic global warming, but predicting 
these changes with global climate models (GCMs) has proven challenging due in part to the dependence of TC 
dynamics on processes that are unresolved at such models' typical spatial resolutions. All else being equal, high-
er horizontal resolution in GCMs typically improves TC activity characteristics (Moon, Kim, Camargo, Wing, 
Sobel, et al., 2020; Murakami & Sugi, 2010; Shaevitz et al., 2014; Vidale et al., 2021; Walsh et al., 2013; Wehner 
et al., 2015), but models with similar resolutions can still vary widely in their representations of TC activity (Ca-
margo et al., 2020), as differences in the model configuration such as the convection scheme (Duvel et al., 2017; 
Kim et al., 2012; Murakami et al., 2012; Vitart et al., 2001), dynamical core (Reed et al., 2015), and coupling to 
the ocean (Li & Sriver, 2018; Scoccimarro et al., 2017; Zarzycki, 2016) also affect TC properties. Given these 
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TC count biases globally and in most regions. One-year sensitivity tests to changes in various microphysical 
and dynamical tuning parameters are also examined. Increasing the entrainment rate for the more strongly 
entraining plume in the convection scheme increases the number of TCs (though also affecting other climate 
variables, and in some cases increasing biases). Variations in divergence damping did not have a strong effect 
on simulated TC properties, contrary to expectations based on previous studies. Overall, the improvements in 
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Plain Language Summary Tropical cyclones, storms known as hurricanes, typhoons, or cyclones 
in different parts of the world, are one of the most dangerous natural hazards, and it is an important question 
whether they will get more powerful or common in our changing climate. Global climate models, used by 
scientists to study climate change, can simulate tropical cyclones, but in the models these storms tend to be 
weaker and less numerous than in the real world, and this is especially true for the previous generation climate 
model developed by NASA, known as GISS-E2. We analyzed tropical cyclones in the newest version of this 
model, GISS-E3, running at its highest resolution, in which the world is divided into grid boxes about 50 km 
wide. We found that the new version has more and stronger cyclones than the old version. While the storms 
are still weaker and less numerous than in the real world, GISS-E3 now simulates storms strong enough that 
they would be called hurricanes instead of tropical storms, and it is comparable to its peer climate models in its 
representation of tropical cyclones.
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differences between GCMs, and the rapid increase of computational expense with resolution, some progress in 
understanding changing TCs in future climates is being gained using models run at resolutions of about half 
a degree (currently, a plausible compromise between computational expense and TC simulation fidelity), in 
single-model large ensembles (Yoshida et al., 2017) and in multi-model ensembles including the U.S. Climate 
Variability and Predictability Program (CLIVAR) Hurricane Working Group experiments (Shaevitz et al., 2014; 
Walsh et al., 2015) and HighResMIP (Haarsma et al., 2016; Roberts et al., 2020a, 2020b), an endorsed project of 
the Coupled Model Intercomparison Project (CMIP) Phase 6 (Eyring et al., 2016).

To better understand the behavior of TCs in such multi-model ensembles predicting future climates, it is helpful 
to analyze TCs in depth in the individual GCMs. The questions of how TCs are affected as models go through 
their development cycles, and the sensitivities of TC activity and other climate variables to the parameters often 
used to tune GCMs, are also of interest.

Here we characterize the properties of TCs in two development versions of the NASA Goddard Institute for 
Space Studies (GISS) ModelE3, the next generation GCM still under development at GISS: one from early in 
the model's development and previously used by Cesana et al. (2019) and Camargo et al. (2020), and another 
after a further year of development. The previous generation GISS GCM, ModelE2 (Schmidt et al., 2014), has no 
version with horizontal resolution finer than 1°, and lags behind other GCMs, even those of similar resolutions, 
in the intensity of its simulated TCs (Camargo et al., 2016; Shaevitz et al., 2014). A major goal of this study is 
to evaluate whether the simulation of TCs in the 0.5° version of E3 is now comparable to that of other GCMs 
(e.g., Camargo et al., 2020; Roberts et al., 2020a; Shaevitz et al., 2014) and the extent to which this assessment 
has changed through the model development process. E3 is one of several components of GISS's contributions to 
CMIP6, along with E2.1 (Kelley et al., 2020) and the high-top version E2.2 (Orbe et al., 2020; Rind et al., 2020), 
all successors of E2, which was GISS's contribution to CMIP Phase 5 (Taylor et al., 2012). E3 differs from these 
other versions in that it uses a cubed sphere grid with the Putman and Lin (2007) dynamical core. In contrast to 
the E3 version being used for CMIP6, which uses a C90 grid, here we consider the C180 version of the cubed 
sphere, in which each face of the cube measures 180 grid cells in length; this is equivalent to about 0.5° or 55 km 
resolution. This is the first in depth analysis of TC activity in the high-resolution version of E3. By comparison, 
Camargo et al. (2016) analyzed TCs in a version of E2 with a C90 cubed sphere grid and the dynamical core of 
Suarez and Takacs (1995).

In addition to making comparisons between the two versions of E3 analyzed here, and between these and obser-
vations, we are also interested in understanding how the GISS TCs depend on the model physics and the extent 
to which various parameters can be tuned to improve TC representation. To this end, we have run numerous short 
experiments with E3 in which individual tuning parameters were changed, and we examine the resulting changes 
in TC properties as well as other climate variables and the errors in these variables with respect to observations. 
These are inspired by past experiments showing the sensitivities of TC properties to entrainment rate parameters 
in E2 (Kim et al., 2012) and the scale-selective damping rate of divergent horizontal flow in the Geophysical Flu-
id Dynamics Laboratory (GFDL) High-Resolution Atmospheric Model (HiRAM) (Zhao et al., 2012). These help 
us understand how much room there might be to further improve TCs in E3 through tuning at the same resolution, 
and whether such improvements would come at the cost of making other aspects of the climate less realistic. Our 
preference for the sensitivity experiments was to cover a larger span of parameters and their values in one-year 
simulations, instead of fewer experiments with longer simulations. While longer simulations would be prefera-
ble, the model biases are large enough that they are easily apparent in one-year simulations, and the sensitivity 
experiments clearly identify which of the parameters tested have the strongest influences on the simulated TCs.

In Section 2 we describe the model versions, observational data sources, and the methods of our data analysis. 
Section 3 contains statistics of the overall distribution of storms, genesis, and Accumulated Cyclone Energy, 
globally, regionally and across in the seasonal cycle. Section 4 explores the physical properties of the simulated 
tropical cyclones, such as maximum wind speed, minimum central pressure, and lifetime, and the storms' spatial 
structure. Section 5 discusses the TC and climate responses to the 1-year tuning experiments. Section 6 summa-
rizes our work and discusses possibilities for further improvement of TC representation.
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2. Methodology
Version 1 (V1) of the model is an early version of E3 that was used for NASA's contribution to the study by Ca-
margo et al. (2020) on whether there are cross-model relationships between TC climatology and environmental 
variables and for the study of tropical low cloud responses to sea surface temperature (SST) forcings by Cesana 
et al. (2019). Version 2 (V2) is a refined version of the model after a further year of model development. Struc-
turally, V2 differs from V1 primarily in its treatment of stratiform cloud microphysics, adding growth of snow 
by vapor deposition omitted from the scheme of Gettelman and Morrison (2015) and correcting several errors 
in the scheme as originally implemented in V1. Altogether, these updates influence tropical upper-tropospheric 
relative humidity and latent heating, but we have not attempted to systematically quantify each effect individually. 
Also, in V1, inconsistent graupel densities were used in different parts of the convective ice parameterization, and 
this discrepancy has been corrected in V2. Convective precipitation drop size distributions were also modified, 
which resulted in larger precipitation effective radii. These changes in convective condensate characteristics led 
to a roughly 5%–10% increase in cloud liquid water path, and a roughly 1–5 W m−2 increase in top of atmosphere 
(TOA) reflected shortwave (SW) radiation, varying regionally. The broad increase in reflected SW radiation 
contributed to a larger TOA energy imbalance found in V2, which is discussed in Section 5.

The two model versions were run with default entrainment and divergence damping parameters from 1980 to 
2000, forming 21 Northern Hemisphere TC seasons (January to December) and 20 complete seasons for the 
Southern Hemisphere (July to June) and are referred to as 20-year test runs. Most of this paper analyzes these test 
runs, while Section 5 analyzes TC and climate properties in 1-year sensitivity experiments in which various en-
trainment and damping parameters were modified. The models were run in their atmosphere-only configurations, 
with specified, monthly varying SSTs from 1980 to 2000 taken from the Met Office Hadley Centre SST data set 
version 2.1 (Titchner & Rayner, 2014). The 1-year sensitivity experiments were run for the year 1990, chosen for 
being an El Niño–Southern Oscillation neutral year.

For our database of observed TCs, we use the International Best Track Archive for Climate Stewardship (IB-
TrACS; Knapp et al., 2010; Kruk et al., 2010), using in particular the data reported by the U.S. agencies: the 
National Hurricane Center for the North Atlantic and Eastern North Pacific and the Joint Typhoon Warning 
Center for the Western North Pacific, South Pacific, and Indian Oceans. For the observations, we only include 
best track data at 0, 6, 12, or 18 hr UTC, and we filter the storms so that only tropical cyclones that reach at least 
tropical storm strength (34-knot sustained winds, 1 min average) are included. However, portions of the lifetimes 
of these TCs with the wind speed below 34 knots are included in the statistics. We include all portions of these 
tracks due to the inconsistency in labeling storms as extratropical or post tropical across basins, even within the 
U.S. agencies.

TCs in the model simulations are tracked using the method described in Zhao et al. (2009), with specific options 
chosen as follows. A 12-model-grid-box-wide window (the standard in the code for C180 grids) is looped through 
each 6-hourly model output snapshot to detect possible tropical cyclones. Each TC candidate is required to exceed 
an 850 hPa cyclonic relative vorticity threshold of 3.5 × 10−5 s−1, to have a positive warm core temperature anom-
aly relative to the search window mean (averaged between 300 and 500 hPa at the temperature maximum), have a 
sea level pressure minimum within 4° of the vorticity maximum, and to be located between 70°N and 70°S. Once 
identified, the storm candidates are tracked forward in time searching within 1,500 km of the previous position 
(defined as the location of the SLP minimum), and further criteria are applied for tracks to be included. TCs must, 
on three separate (not necessarily consecutive) days, exceed the cyclonic 3.5 × 10−5 s−1 vorticity threshold, have a 
warm core temperature anomaly exceeding 1°C, and have maximum surface wind speed, defined here as the wind 
speed at 10 meters in the postprocessed model output, exceeding 15.2 m/s (but the winds can drop below this 
threshold at times during the trajectory). In addition, the 10 m winds must at some point exceed 17.0 m/s, or trop-
ical storm intensity. As pointed out by, for example, Sugi et al. (2017) and Yoshida et al. (2017), since the maxi-
mum wind speed decreases with coarser model resolution, it is common to use a lower threshold than the World 
Meteorological Organization definition of 17.0 m/s when tracking TCs in GCMs. Similarly to other studies at this 
resolution (e.g., Zhao et al., 2009), we do not impose a threshold lower than 17.0 m/s for the lifetime maximum 
wind speed in order to obtain a reasonable number of TCs to analyze, but we relax this slightly for the longevity 
determination to avoid excluding storms that only briefly exceed 17.0 m/s. The choice of the lifetime maximum 
wind speed threshold strongly affects the number of weaker storms detected, but does not affect stronger storms. 
The choice of tracking scheme can also affect the number of TCs detected in GCM output (Aarons et al., 2021; 



Journal of Advances in Modeling Earth Systems

RUSSOTTO ET AL.

10.1029/2021MS002601

4 of 24

Horn et al., 2014; Roberts et al., 2020a), even after differences in detection thresholds are made uniform across 
schemes (Horn et al., 2014). Our focus is less on the total number of TCs than on their physical characteristics 
and the ability to simulate storms of hurricane strength.

For much of this analysis, in addition to global statistics, we also show statistics of TCs grouped by hemisphere, 
and by 8 standard TC basins indicated by the track colors in Figure 1 and defined in Table S1 of Supporting In-
formation S1. We omit plots of the South Atlantic for most statistics given the paucity of storms there. For most 
statistics, the storm is labelled according the storm genesis basin, with the exception of Accumulated Cyclone 
Energy (ACE), for which we label the storm basin according to its location at each snapshot. ACE is defined as 
the sum of the squared maximum sustained wind speeds over 34 knots in observations (Bell et al., 2000). For the 
model, we instead use Modified Accumulated Cyclone Energy (MACE), which does not require a wind speed 
over 34 knots to be counted, following Camargo et al. (2005) and Camargo et al. (2016).

Figure 1. Maps of all tropical cyclone tracks in (a) V1 and (b) V2 of the model, and in the IBTrACS observations (c), from 
1980 through 2000. Tracks are colored according to the storm's genesis region: North Indian (red), Western North Pacific 
(green), Eastern North Pacific (blue), North Atlantic (teal), South Indian (magenta), Australian Region (coral), South Pacific 
(maroon), and South Atlantic (hot pink).
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3. Tropical Cyclone Climatology
Figure 1 shows maps of tropical cyclone tracks in the model from 1980 through 2000 in the two model versions 
and in the IBTrACS observations. Some features are readily apparent: both model versions under-represent the 
observed number of TC tracks in most regions, especially in the North Atlantic and the eastern North Pacific, re-
gions in which such low biases in TC activity are common across models and reanalysis (e.g., Aarons et al., 2021; 
Camargo, 2013; Camargo & Wing, 2016; Camargo et al., 2020; Roberts et al., 2020a). Conversely, both model 
versions have several TCs in the South Atlantic, while IBTrACS contains none in this region from 1980 to 2000. 
Historically, the South Atlantic has been considered a region free of TCs. However, since the occurrence of Hur-
ricane Catarina (2004) and Subtropical Storm Anita (2010) (Dias Pinto et al., 2013; Pezza & Simmonds, 2005; 
Veiga et al., 2008), recent studies have shown the regular occurrence of TCs with subtropical characteristics there, 
similarly to the North Atlantic (Evans & Braun, 2012; Gozzo et al., 2014, 2017). There are generally more TCs 
in V2 than in V1, in all regions except the Eastern North Pacific.

Figure 2 shows the density of storm tracks (colors) and genesis locations (contours) in each model version and 
in the observations, calculated as the number of storm-days or genesis occurrences in the data set within the 10° 

Figure 2. Maps of TC track density (colors) and genesis density (contours) in (a) V1 and (b) V2 of the model, and in the (c) 
IBTrACS observations, from 1980 through 2000. Contours are drawn at 0.1 and in increments of 0.5, starting from 0.5, in 
units of storm days per 100 square degrees per year. A Gaussian filter with a σ value of 2 has been applied to the densities to 
create smoother contours with small numbers of storms.
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by 10° box centered on any particular point, divided by the number of years. The biases seen in Figure 1 are also 
apparent here, as are the subtle changes from V1 to V2. The model versions capture many broad features of the 
spatial distribution of the observed storms, such as the local maxima in the track and genesis densities over the 
Western North Pacific, the Bay of Bengal, and off the coast of Mexico, but they mostly underestimate the mag-
nitude of these features, especially in the Eastern North Pacific and North Atlantic.

Figures 3a–3j shows the distributions of the number of TCs per year globally, by hemisphere, and in each region, 
in each model version and the observations. Globally (Figure 3j), V2 has slightly more storms than V1, but both 
underestimate the observed number of TCs by roughly a factor of 2. The model underestimation is strongest in 
the Eastern North Pacific, North Atlantic, and South Indian regions, while V2 produces similar numbers to the 
observations in the North Indian Ocean and actually overestimates the observed TC counts in the South Pacific. 
The mean number of storms increases from V1 to V2 in every region except for the Eastern North Pacific, where 
V2 has even fewer TCs than V1.

Figures 3k–3t shows similar box plots but for ACE/MACE per season. The model generally underestimates this 
quantity relative to observations by more than it does the TC counts, indicating that the storms are weaker in the 
two model versions than in observations, as can be expected for models at this resolution (Davis, 2018; Moon, 
Kim, Camargo, Wing, Reed, et al., 2020; Roberts et al., 2020a) and which will be further explored in Section 4. 
Even without a minimum wind speed threshold to be counted towards MACE, the model underestimates ACE 
by about a factor of 4 globally (Figure 3t), and by an order of magnitude in the Eastern North Pacific and North 
Atlantic (Figures 3n and 3o), which arises mainly from the lack of strong TCs in the model. On the other hand, 
the high number of weak storms leads to similar values between V2 and the observations in the South Pacific 
(Figure 3s).

Figures 4a–4i shows the seasonal cycle of the number of tropical cyclones in each hemisphere (Figures 4a and 4b) 
and region (Figures 4c–4i). In both the Northern and Southern Hemisphere, the low bias in TC frequency is 
concentrated in the peak months of the TC season, with the model doing better during the early and late seasons 
and correctly simulating the lack of storms in the off season. Interestingly, in the North Indian Ocean, while V2 
matches the observed total number of storms better than V1 does (Figure 3b), Figure 4c shows that these addi-
tional storms occur at the wrong time, during the summer monsoon. In reality, this basin has few tropical cyclones 
between the pre- and post-monsoon peaks (e.g., Liu et al., 2021). This bias was previously documented in the 
GISS Model E2 (Camargo et al., 2016), as well as other models (Camargo, 2013; Camargo et al., 2005; Shaevitz 
et al., 2014), and two possible reasons were considered, first the tracking algorithm having trouble distinguishing 
between monsoon depressions and weak model TCs, second the model producing TCs in the wrong season in 
the North Indian Ocean. However, this bias is much smaller in either version of E3 than in E2 (cf., Figure 9 of 
Camargo et al. [2016]). V1 correctly reflects the lack of TCs in the North Indian ocean in midsummer, and more 
closely matches the spring and fall peaks in this basin, but both versions underestimate the spring and fall peaks 
(more so for V1 in the spring) when looking at ACE/MACE (Figure 4l). The excess storms in V2 in the South 
Pacific are confined to the months of February through April.

We also show in Figures 4j–4r the seasonal cycle of ACE (observations) and MACE (model) in each hemisphere 
and region. As with the annual box plots, the model biases in ACE are in most cases more pronounced than those 
in TC counts, due to compounding errors of storms being too few and too weak. The excess TC activity in V2 in 
the Indian summer monsoon is still apparent in the ACE plot (Figure 4l), while the high number of storms com-
pensates for their low intensity in V2 in the South Pacific leading to similar ACE/MACE (Figure 4r).

4. Tropical Cyclone Physical Properties
4.1. Storm Intensity and Lifetime

Having explored the statistics of TC activity and seasonality, we now delve into the physical properties of the 
storms as simulated by E3, starting with the maximum surface (10 m) wind speed and minimum central pressure. 
Figure 5a shows distributions of the maximum wind speed of TCs in E2 at 1° resolution (results from Camargo 
et al. [2016]), versions V1 and V2 of E3, and observations. Recall that TCs in E3 must reach at least 17 m/s to 
be counted, whereas in E2 a wind speed threshold of 9 m/s was used in the Camargo and Zebiak (2002) tracking 
scheme to account for the inability of low-resolution models to produce the wind speeds typical of real tropical 
cyclones (Davis, 2018; Moon, Kim, Camargo, Wing, Reed, et al., 2020; Walsh et al., 2007). E3 has sufficient 
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resolution at 0.5° that a substantial number of tropical cyclones—albeit a substantially lower number per year 
than observed, as shown above—are found in the model even if we use the same threshold as in observations.

The maximum wind speeds have improved significantly from E2 to E3. The median TCs in E3 are of similar 
strength to those in the upper quartile for E2, and the strongest storms in E3 reach hurricane intensity (64 knots, 

Figure 3. Box plots showing distributions of TC counts (top 10 panels) and ACE/MACE (bottom 10 panels) per year from 1980 through 2000 in V1, V2 and the 
observations, globally, by hemisphere, and by genesis region. Years defined from January to December for the Northern Hemisphere (21 years) and from July to June 
for the Southern Hemisphere (20 years, excluding the two half seasons). Red asterisk indicates the mean. Notch indicates 95% confidence interval of the median. 
Bounds of the boxes indicate first and third quartiles. Whiskers indicate the full range of data, with no provision for outliers.
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Figure 4. Mean number of tropical cyclones per year from 1980 to 2000 in each month, for the (a and b) two hemispheres 
and in (c–i) each of seven regions, in observations (bars) and the two model versions, and equivalent plots for ACE/MACE 
(j–r).
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33 m/s). However, TCs in excess of 80 knots are still absent from E3. The further refinements of E3 from V1 to 
V2 led to still stronger TCs, but the improvement is much less than from E2 to E3. Notably, the median lifetime 
maximum wind speed of about 25 m/s in V2 is comparable to those of other GCMs at similar resolution (cf., Fig-
ure 8a of Shaevitz et al. [2014]), including the approximately 40 km High-Resolution Hadley Center Global En-
vironmental Model Version 3 (HadGEM3), 50 km HiRAM, and 56 km Goddard Earth Observing System Model 
Version 5 (GEOS-5). This suggests that with E3, the GISS GCM is now competitive with other models in its TC 
representation, at least for tropical storms, with the caveats that the upper tail of wind speed distribution does not 
extend into Category 2 or 3 on the Saffir-Simpson scale in E3 as it does in these other models. (In addition, the 
CMIP6 versions of these other models may contain subsequent improvements to their TC representations even at 
the same resolution, compared to what was shown in Shaevitz et al. [2014].)

Figures 5b and 5c show histograms of TC maximum wind speed and minimum central pressure at peak inten-
sity, in V1, V2, and the observations, normalized by the number of storms in each data set. For the wind speed 
(Figure 5b), storms in both model versions are much weaker than those observed, with very few storms reaching 
hurricane intensity (exceeding 64 knots) in V1, and some Category 1 storms in V2 but still none exceeding 
80 knots. The minimum central pressures, however (Figure 5c), show better model performance at simulating 
stronger storms, especially for V2, with some reaching as low as 920 hPa. Since the wind speed is related to the 
pressure gradient, the pressure gradient for a given minimum central pressure is related to storm size, and storm 
size is constrained by horizontal resolution, it is not surprising that, at this resolution, higher storm intensities are 
captured if pressure is used as a metric than if wind is. This characteristic has been noticed in many other mod-
els, for example, Roberts et al. (2015). Comparing the probability density functions in Figure 5b to those of the 
GCMs in Figure 7b of Roberts et al. (2020a) confirms that E3 simulates TCs achieving comparable intensity to 
those of similar resolution GCMs after a further 6 years of model development since Shaevitz et al. (2014). When 
using maximum wind speed as TC intensity, of the GCMs analyzed by Roberts et al. (2020a), only the 25 km 
resolution version of the Euro-Mediterranean Centre on Climate Change coupled climate model (CMCC-CM2-
VHR4; Cherchi et al., 2019) and the 50 km Centre National de Recherches Météorologiques version 6-1 model 

Figure 5. Distributions (a) of TC peak intensity sustained winds in the E2 control runs (Camargo et al., 2016), V1 and V2 of E3, and observations, and probability 
density functions of surface winds (b) and pressure (c) among TCs globally at peak intensity, in the observations (gray filled bars) and the two model versions (colored 
step plots). For the wind speed, each histogram bin includes two of the 5-knot increments used in observational reporting.
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(CNRM-CM6-1-HR; Voldoire et al., 2019) have an appreciable fraction of storms of at least category 2 intensity, 
with the rest, like E3, having very few if any storms exceeding 80 knots.

Figure 6 shows the relationship between wind and pressure in each model version, including least squares power 
law fits to all data points and those at peak intensity, along with empirically derived relationships from observa-
tions (Atkinson & Holliday, 1977; Knaff & Zehr, 2007), similar to Figure 2 of Kim et al. (2018). The modeled 
storms generally do seem to follow a power law structure, especially at peak intensity, with the slope being shal-
lower in V2 (cf., red and blue curves in Figure 6), indicating stronger winds for the same pressure. Both versions 
have a much steeper slope than the observations, consistent with the better agreement of the probability density 
functions for pressure than for wind speed shown in Figure 5.

Figure 6. Scatter plots of maximum 10 m sustained wind versus minimum sea level pressure (MSLP) across all storms in (a) V1 and (b) V2, with lighter dots 
indicating all intensities during the storm's lifetime, and darker dots indicating the peak intensity as defined by maximum sustained wind. Power law fits to the modeled 
storms are shown as dashed and solid curves for the full set and peak intensity data points, respectively, in red for V1 and blue for V2. Wind and pressure observations 
from IBTrACS (all intensities, not peak intensity, up to 100 knots) are shown as gray dots, and empirically derived power law relations from observations (Atkinson 
& Holliday, 1977; Knaff & Zehr, 2007) are shown as black curves. A few model pressures greater than 1,010 hPa were omitted to avoid complex numbers in the fit 
calculation. Equations for the best fit curves are shown in the figure legend, where vm is the storm's maximum sustained wind speed and MSLP is the mean sea level 
pressure.
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Figure 7 shows the distribution of TC lifetime in the model and observations, globally and in the different regions. 
The model only slightly underestimates the observed TC lifetimes, consistently across different regions, with no 
significant differences between V1 and V2, except in the Eastern North Pacific (Figure 7d) where TCs are about 
a day shorter-lived in V2. The model also qualitatively reproduces some of the observed differences in average 
lifetime between regions, such as TCs being longer-lived in the Western North Pacific (Figure 7c) than in the 
North Indian ocean (Figure 7b). Note that our storm tracker settings impose a minimum lifetime of 3 days for TCs 
to be counted, which is reflected in the box plots. We also made similar plots for the distributions of peak wind 
speed and pressure by region (not shown) and found that these quantities vary little by region.

4.2. Storm Structure

To better understand the physical properties of the storms, we show in Figure 8 several properties of TCs at peak 
intensity in a 15° by 15° box centered on the storm center, averaged over five pressure bins following Figure 8 of 
Roberts et al. (2020a). The 𝐴𝐴 𝐴 920 hPa bin is excluded because no storms reached that pressure in V1 and only one 
did in V2; we include this storm in Figure 9 as a case study. We include only storms in the Northern Hemisphere 
to better show any asymmetry between different quadrants. While the sea level pressure contours (colors, top 
two rows of Figure 8) are generally concentric and elliptical, the tangential winds (black contours, all rows) are 
more kidney-shaped, indicating stronger winds north and east of the center, as would be expected given generally 
westward and northward motion at the times when storms are typically at peak intensity. Precipitation, meanwhile 
(third and fourth rows of Figure 8), is strongest in the southwest and northeast quadrants (at least in the core of 
heavy precipitation indicated by the 20 mm/day contour) and for the strongest storms, the precipitation maximum 
is west of the center. The precipitation minimum in the northwest quadrant is likely due to entrainment of subtrop-
ical and mid-latitude dry air into the storm following its cyclonic and radially inward circulation. These spatial 
structures in precipitation are similar for V1 and V2, with the main difference between versions being greater 
numbers of storms in the higher intensity bins in V2. For V2, we also had the necessary (instantaneous, 6-hourly) 
data available for outgoing longwave radiation (OLR), which is shown in the fifth row of Figure 8. This shows a 
similar pattern to precipitation of having the lowest OLR southwest and northeast of the center, which would be 
expected given the known correspondence between increased precipitation and decreased OLR.

Figure 7. Box plots showing the distribution of TC lifetime in V1, V2, and observations, (j) globally, by (a and f) hemisphere, and by (b–e and g–i) genesis region. 
Mean value indicated by red asterisk; notch indicates 95% confidence interval for the median.
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The pattern of kidney-shaped tangential wind contours and more concentric pressure contours is also seen in 
the modeled and reanalysis TCs shown in Roberts et al. (2020a), especially at the lower resolution they analyze. 
However, the equivalent wind speed contours are much closer to the center in our plots, indicating some combi-
nation of smaller storms and weaker winds at the same pressures. Vannière et al. (2020) and Zhang et al. (2021) 
also analyzed storm-centered precipitation composites in multiple GCMs and in satellite-derived rainfall rates 
(see their Figures 1 and 8–11, respectively), and found that a southwest-to-northeast orientation of the core of 
heavy precipitation is a common feature of Northern Hemisphere TCs in observations and in other GCMs. Zhang 
et al. (2021) showed that this orientation is flipped vertically for Southern Hemisphere TCs, and that, as in E3, 
there is more precipitation equatorward than poleward of the storm further away from the center, although inter-
estingly this is flipped in observations for the strongest TCs in the Northern Hemisphere.

The strongest storm in the V2 20-year integration, whose properties corresponding to Figure 8 are shown in Fig-
ures 9a–9c, provides a useful case study of a strong TC in E3 without averaging artifacts. This storm originates in 
the Western North Pacific region in June 1994 at 10.75°N, 143.75°E, as shown in the track map in Figure 9d, and 

Figure 8. Composite, storm-centered properties of Northern Hemisphere tropical cyclones, binned by peak intensity pressure. Contours show tangential velocity at 
10 m, in 5 m/s intervals, with a thicker contour at 20 ms. Colors show: sea level pressure in V1 and V2 storms (top two rows); precipitation in V1 and V2 (third and 
fourth rows); and outgoing longwave radiation in V2 (fifth row). The number of storms in each pressure bin is indicated by n.
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reaches its lowest minimum central pressure of 918 hPa at 21.75°N, 129.25°E. The typhoon's peak wind speed of 
73.8 knots is reached 6 hr after the time of its lowest pressure, at which point the maximum wind speed is 69.9 
knots and the storm is moving west-northwestward. At the time of its lifetime minimum pressure as shown in the 
figure, the storm exhibits a kidney-shaped wind maximum east-southeast of the center and a central minimum 
indicated by the reappearance of the 20 m/s contour. In this case precipitation (Figure 9b) is also maximized east 
of the storm center, but the broader core region of precipitation indicated by the 20 mm/day contour is aligned 
perpendicular to the axis of the 20 m/s wind contour, a similar pattern to that seen in Figure 8. Unlike the averages 
shown in Figure 8, this individual storm has a broad region of little to no precipitation (𝐴𝐴 𝐴 0.5 mm/day) surround-
ing the core, while there are isolated areas of heavy precipitation to the south of the TC. This suggests that the 
broad swath of light precipitation surrounding the TCs in Figure 8 could be an artifact of averaging mesoscale 
precipitation features across different TCs. The OLR for this storm (Figure 9c) shows several interesting features: 
there is a local maximum of OLR, indicative of reduced cloud cover, which would be suggestive of an eye from 
an infrared satellite image, but it is centered northwest of the pressure minimum and wind speed maximum, sug-
gesting that the vertical structure of the storm is tilted. There is also a band of cloud cover about 5° north of the 
storm that extends east to the edge of the plot, and corresponds with a streak of precipitation, suggesting that the 
model might be capturing some outer rainbands associated with TCs.

Figure 9. Tangential winds at 10 m (contours, interval 5 m/s) and (a) sea level pressure, (b) precipitation, and (c) OLR at peak intensity for the strongest storm by 
minimum central pressure in the V2 20-year test, and (d) map of the track with the location at lowest pressure marked with a dot. Thicker dashed contour is at 20 m/s.
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We have also examined TC structure from a radial-height perspective, following the methodology of Kim 
et al. (2018) and Moon, Kim, Camargo, Wing, Sobel, et al. (2020), who analyzed 8 different GCMs. Figure 10 
shows azimuthally averaged temperature anomalies and pressure velocities (Figures 10a and 10c) and tangential 
and radial velocities (Figures 10b and 10d) for V1 TCs with maximum sustained winds between 18 and 21 m/s 
(Figures 10a and 10b) and between 30 and 33 m/s (Figures 10c and 10d), averaged across all 6-hourly storm data 
points that fit into these wind speed bins in 1994 and 1995. These correspond to Figures 2 through 5 of Moon, 
Kim, Camargo, Wing, Sobel, et al. (2020). Temperature anomalies are defined as the mean within a 1,000-km-
wide square centered on the storm, minus the mean inside a concentric 2,000-km-wide square but outside the 
smaller square, as in Kim et al. (2018). The warm core temperature anomaly structures are comparable to those 
in the models analyzed by Moon, Kim, Camargo, Wing, Sobel, et al. (2020), with maxima at the upper end of 
the range of those models. The updrafts, however, are weaker in V1 than in any of the Moon et al. models, for 
both wind speed bins. Consistent with this, radial profiles of precipitation (Figure S1 in Supporting Informa-
tion S1) show that the precipitation maximum is weaker in GISS TCs than in other GCMs shown in Figure 6 of 
Moon, Kim, Camargo, Wing, Sobel, et al. (2020). Most GCMs, especially at higher resolutions, tend to produce 
more rain near the center of TCs than in satellite retrievals (Moon, Kim, Wing, et al., 2020) suggesting that the 
GISS-E3 model may be closer to reality than the other models in terms of having weaker precipitation and up-
drafts. The vertical structures of the tangential velocities in V1 are similar to those of the other models for both 

Figure 10. Azimuthally averaged temperature anomaly, pressure velocity, and tangential and radial velocity for TCs in V1 in 1994 and 1995, grouped into maximum 
sustained wind speed bins of (a and b) 18–21 m/s and (c and d) 30–33 m/s, following Kim et al. (2018) and Moon, Kim, Camargo, Wing, Sobel, et al. (2020). Contour 
interval is 0.3 Pa/s for pressure velocity and 3 m/s for radial velocity, with negative values dashed. Note different horizontal scales for the two columns.
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intensity bins, as would be expected from thermal wind balance (or the analogous nonlinear balance appropriate 
for TCs) given similar thermal structures. Radial inflows near the surface are much weaker in V1 than in the 
Moon et al. models, never reaching the −3 m/s contour when the other models reach at least −6 and with the zero 
contour indeed hovering near the surface. For the 30–33 m/s storms, however, the surface inflow in V1 is similar 
in magnitude to the other GCMs. The upper level outflow is weaker in V1 than in the other GCMs for both in-
tensity bins. The weaker updrafts and weaker radial winds compared to other models are qualitatively consistent 
given conservation of mass. The peak of the updrafts is located about 50 km away from the storm center in E3, 
in contrast to some GCMs in Moon, Kim, Camargo, Wing, Sobel, et al. (2020) in which the strongest updrafts 
are at the storm center, and more consistent with real TCs, where updrafts are strongest in the eyewall. We were 
not able to do these calculations for V2 because they require 6-hourly 3D fields which were not saved for V2.

5. Sensitivity Tests
In this section, we present the results of various 1-year experiments that were done with V1 and V2 of the model 
to aid in model development and explore the space of sensitivity of various tropical cyclone and other climate 
variables to a number of parameters. A total of 51 such experiments are examined for V1, and four for V2, in 
addition to the same year (1990) from the 20-year runs with the default values of the parameters analyzed in 
the previous sections. The parameters changed in the experiments and their default values are listed in Table 1. 
These parameters include dimensionless multipliers for the entrainment rates for the more weakly and strongly 
entraining plumes, referred to as ϵ1 and ϵ2, respectively, in the two-plume cumulus convection parameterization, 
originally described by DelGenio and Yao (1993), which was used in previous versions of the GISS GCM (Kelley 
et al., 2020; Schmidt et al., 2014) and has been retained in E3.

Figure 11 illustrates the results of the V1 sensitivity tests of TC and climate variables to varying entrainment and 
damping parameters, in a similar format to Figure 3 of Mauritsen et al. (2012). The TC and climate variables 
shown include global TC counts (sixth row), the strongest observed TC winds (seventh row), and five global 
mean climate state variables: TOA radiative imbalance, cloud fraction, ratio of convective to large scale cloud 
fraction, liquid water path, and ice water path. Of the five model parameters shown, only ϵ2 has a systematic ef-
fect on TC properties, with higher values of ϵ2 associated with more and stronger TCs. Accordingly, many of the 
sensitivity tests were redone with ϵ2 increased to 0.9 from its default value of 0.6; these experiments are shown as 
green curves in Figure 11, whereas those with the default value of ϵ2 are shown in black. The experiments with 
ϵ2 = 0.9 consistently have higher TC counts and stronger TCs than those with ϵ2 = 0.6 across all of the values 
tried for the other parameters. However, increasing ϵ2 also affects other climate variables. Most importantly, the 
ϵ2 = 0.9 runs consistently have a TOA radiative imbalance of about −6 W m−2 (defined positive downward) in the 
annual mean, versus a default value that is close to 0, and this imbalance is insensitive to changing any of the other 
parameters. Increasing ϵ2 also leads to greater cloud cover (albeit decreasing ϵ2 from the default value also does 
this), a greater fraction of convective cloud, and a higher liquid water path, while having little effect on ice water 
path. Physically, these results are suggestive of a mechanism in which the increased entrainment rate leads to 
less deep convection, less convective subsidence drying, more shallow convection, a moister lower troposphere, 
and more clouds. The greater cloud cover causes a higher planetary albedo, which leads to the greater radiative 
imbalance, and the greater liquid water path makes TC formation easier.

Besides ϵ2, the other parameters have little systematic effect on any of the TC or climate variables. Most notably, 
we find little sensitivity to the divergence damping parameters. This is in contrast to Zhao et al. (2012), who found 

Parameter Abbreviation Default value

Entrainment rate multiplier for weaker-entraining plume ϵ1 0.2

Entrainment rate multiplier for stronger-entraining plume ϵ2 0.6

Divergence damping for sponge layer Ds 0.03

Divergence damping for internal mode Di 0.05

Divergence damping for external mode De 0.02

Table 1 
Parameters Varied in Sensitivity Tests, Abbreviations, and Default Values
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Figure 11. Results of 1-year sensitivity tests conducted for V1 varying five different entrainment and damping parameters, including global means of, from top to 
bottom: TOA radiative imbalance, cloud fraction, ratio of convective to large-scale cloud cover, liquid water path, ice water path, global TC count, and the strongest 
surface sustained wind for any TC. X symbol indicates default value, with the y-value showing the global mean for year 1990 of the 20-year test run. For non-ϵ2 tests, 
black curves indicate tests using the default value of ϵ2, while green curves indicate tests repeated with ϵ2 = 0.9. Envelopes show the standard deviation across the 
12 months.
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a strong sensitivity of TC properties to divergence damping parameters in the 
GFDL HiRAM model, and is somewhat surprising given that HiRAM uses 
the same dynamical core as E3 and was run at the same C180 resolution in 
Zhao et al. (2012). They found, as we do, that divergence damping parame-
ters did not significantly affect the large-scale state of the atmosphere, and 
they attribute the effect of these terms on TCs to suppression of convective 
noise at small spatial scales, which they suggest produces more favorable 
conditions for larger-scale disturbances that generate TCs. We do not ana-
lyze convective variance spectra in this paper, but our results suggest that 
this mechanism is either absent in E3 or that other environmental factors 
are inhibiting additional large-scale disturbances from actually developing 
into TCs. In the experiments where Ds was varied with ϵ2 set to 0.9 instead 
of 0.6 (green curves in Figure 11), higher values of Ds do result in progres-
sively more TCs, which could be due to the mechanism put forward by Zhao 
et al. (2012) and suggests that it is contingent on other conditions favorable 
for TC formation being met.

Experiments varying ϵ1 and ϵ2 were repeated for V2, and these results are 
plotted in Figure 12 (blue lines) along with the equivalent V1 experiments 
(red lines). In V2, decreasing ϵ2 to 0.3 reduces TC counts, but increasing it to 
0.9 barely increases them. In fact, V2 with ϵ2 = 0.6 has as many TCs as V1 
with ϵ2 = 0.9. At the default parameter values, V2 has a slightly larger TOA 
energy imbalance, lower cloud cover, greater fraction of convective cloud, 
lower liquid water path and higher ice water path relative to V1. These vari-
ables respond in similar ways to changes in ϵ1 and ϵ2 in V2 as in V1, except 
that in V2, raising ϵ1 reduces ice water path, and raising ϵ2 to 0.9 reduces 
liquid water path (a variable that generally seems to go with TC counts in 
these tests). Changes in liquid and ice water path tend to oppose each other in 
V2 to a greater degree than in V1.

To further assess how climate and TC properties vary across these sensitivity 
tests in relation to each other and to observations, we plot matrices of error 
metrics in the V1 sensitivity tests relative to observations in Figures 13 and 14, 
and for V2 in Figures 15 and 16. Observation sources are given in Table 2. 
All observations are averaged across the years 1981 through 2010, except for 
the satellite-derived quantities which were averaged over the shorter periods 
available: the International Satellite Cloud Climatology Project (ISCCP; July 
1983 through December 2009) and Clouds and the Earth's Radiant Energy 
System (CERES; March 2000 through March 2018) data sets. Two different 
metrics of error are shown: the difference in the global mean of each quantity, 
or normalized bias (Figure 13), and the latitude-weighted root-mean-square 
error (RMSE; Figure 14). Zonal mean height-varying quantities are averaged 
across the pressure levels and latitudes with latitude area weighting. To bet-
ter visualize the errors across different variables simultaneously, we apply a 
normalization for each variable: for the difference in global means, we divide 
by the median absolute value across all of the experiments for each variable, 
and for the RMSE, we divide by the inter-quartile range (IQR) across the ex-
periments and subtract the median. The latter normalization is similar to the 
method described by Gleckler et al. (2008) and used, for example, by Zhao 
et al. (2018) for visualizing relative error metrics across model experiments, 
except that we normalize RMSE by the IQR instead of the median in order to 
better draw out inter-model differences when the median RMSE is large and 
the IQR is small. These normalizations allow us to easily see how changing 
a given tuning parameter affects the error for each variable, but they are not 
useful for comparing the magnitude of error across different variables. In our 

Figure 12. As in Figure 11 but for sensitivity tests conducted varying 
entrainment rate parameters in V2 (blue curves), compared with results 
varying the same parameters in V1 (red curves).
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visualizations, for the normalized bias plots, blue colors indicate the model underestimates an observed quantity 
and red colors indicate the model overestimates it, with paler shades indicating better agreement. For the RMSE 
plots, darker colors indicate a greater RMSE.

From Figure 13 we can see how the tuning parameters affect errors in global mean quantities while retaining 
information about the sign of the error. Tropical cyclone track density is consistently too low in the global 
mean, while increasing ϵ2 to 0.9 allows genesis density to sometimes exceed observations when other variables 

Figure 13. Errors in the V1 default 20-year test (left column) and 1-year sensitivity tests relative to observations, expressed as the model's overestimation (red) or 
underestimation (blue) of the global means of the observed quantities, normalized by dividing by the median of the absolute value for each row. Parameters listed in 
Table 1. Key to observations given in Table 2.

Figure 14. As in Figure 13 but for RMSE weighted by cosine of latitude, normalized by dividing by the inter-quartile range of each row and subtracting the row 
median.



Journal of Advances in Modeling Earth Systems

RUSSOTTO ET AL.

10.1029/2021MS002601

19 of 24

are changed (though the TCs are not necessarily in the correct locations). 
The model has a high bias in precipitation in most sensitivity tests, which is 
further increased by increasing ϵ1 and is only reduced by decreasing ϵ2 from 
the default value, which exacerbates the low bias in TCs frequency. (Note 
that some, e.g., Stephens et al. (2012), have argued that the satellite-derived 
precipitation estimates to which we compare the model may have a low bias 
compared to reality, based on energy budget calculations.) The increase of 
precipitation with ϵ1 is consistent with the results of Kim et al. (2012), who 
changed the same parameter in E2 and found that it led to a high precipitation 
bias. Some variables, like cloud optical depth and sea level pressure, have 
consistent biases that are not much affected by changing the tuning parame-
ters. The low ϵ2 tests reverse the sign of the land surface temperature bias in 
addition to that for precipitation, but also have larger biases in OLR, upper 
level zonal winds, zonal mean specific humidity, and surface radiation. In 
addition to the greater TOA radiative imbalance shown in Figure 11, the tests 
with higher ϵ2 have greater biases in the surface radiation imbalance, and 
the greater (negative) TOA imbalance is mainly due to too much outgoing 
shortwave radiation, consistent with the increase in cloud cover shown in 
Figure 11.

Measuring error by differences in global mean quantities does not account 
for the possibility that the model could get the global mean right but have the 
wrong spatial distribution. The normalized RMSE shown in Figure 14 ac-
counts for this, albeit not considering error sign. Looking at the TC properties 
for the experiments where ϵ2 is increased from its default value, we see that 
while errors in the global means are small, in some cases RMSE is relatively 
large compared to other experiments. Given the small number of TCs in one 
year, errors in the spatial distribution especially for genesis density would be 
expected. However, the experiments with ϵ2 set to 0.9 generally have higher 
RMSE for precipitation and zonal mean atmospheric temperature than those 

Figure 15. As in Figure 13 but for the sensitivity tests conducted for V2 
and the equivalent tests also done for V1, with the normalization by median 
absolute value applied across the 10 experiments for each row.

Label Variable Data source Reference

Pr. (GP) Precipitation GPCP version 2.3 Adler et al. (2018)

Pr. (C1) Precipitation CMAP (standard) Xie et al. (2007)

Pr. (C2) Precipitation CMAP (enhanced) Xie et al. (2007)

τcld Cloud optical depth ISCCP Schiffer and Rossow (1983)

SLP 1 Sea level pressure over ocean ERA-I Dee et al. (2011)

SLP 2 Sea level pressure over ocean ICOADS Freeman et al. (2017)

Ts Land surface air temperature CRUTEM4 (standard) Jones et al. (2012)

OLR Outgoing LW radiation (TOA) CERES EBAF Ed4.0 Loeb et al. (2018)

OSR Outgoing SW radiation (TOA) CERES EBAF Ed4.0 Loeb et al. (2018)

u200 200 hPa zonal wind ERA-I Dee et al. (2011)

v200 200 hPa meridional wind ERA-I Dee et al. (2011)

𝐴𝐴 [𝑇𝑇𝑎𝑎] Zonal mean air temperature ERA-I Dee et al. (2011)

Qnet, surf. 1 Net surface heat flux ISCCP, OAFlux Schiffer and Rossow (1983) and Yu et al. (2008)

Qnet, surf. 2 Net surface heat flux CERES, OAFlux Loeb et al. (2018) and Yu et al. (2008)

𝐴𝐴 [𝑞𝑞] Zonal mean specific humidity ERA-I Dee et al. (2011)

Track Den. TC track density IBTrACS Knapp et al. (2010) and Kruk et al. (2010)

Gen. Den. TC genesis density IBTrACS Knapp et al. (2010) and Kruk et al. (2010)

Table 2 
Observations Analyzed in RMSE Plots in Figures 14 and 15, With Data Sources Indicated
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with varying divergence damping terms and ϵ2 at its default value. Other 
variables, such as OLR and outgoing shortwave radiation (OSR), show more 
straightforward relationships between the two error metrics, with smaller 
global mean errors corresponding to smaller RMSEs, while some variables 
with little change in the global mean error across experiments, such as sea 
level pressure and cloud optical depth, have no apparent pattern in the nor-
malized RMSEs due to amplification of noise by the RMSE normalization.

To see how these errors are affected by the change from V1 to V2, we show 
in Figure 15 the same difference in global means quantity as in Figure 13 
but for the V2 default run and the four V2 sensitivity tests, along with their 
counterparts for V1. The median normalization is applied across this set of 
10 experiments. Global TC track and genesis density errors are smaller in 
the V2 default run than in V1, with sensitivity tests producing little further 
improvement. Some climate variables, however, have greater global mean 
biases in V2 than in V1, particularly precipitation, land surface temperature, 
and the net surface heat flux. Interestingly, biases in both OLR and OSR are 
smaller in V2 than in V1, likely owing to the changes in the microphysics 
scheme in the case of OSR, but the TOA radiative imbalance shown in Fig-
ure 12 still increases since the compensation between these biases is reduced. 
The normalized RMSE metric (Figure 16) shows that errors in most climate 
variables (though not precipitation for the default case) are larger in V2 than 
in V1. RMSE values for TC track density and genesis density are also larger 
in the default case for V2 than V1, despite the number of tropical cyclones 
being higher. This is likely due to V2 having fewer TCs than V1 in the East-
ern North Pacific (Figure 1), which is the place with the highest TC track and 
genesis density in the real world.

The similarity of V1 and V2 storms, combined with the relative insensitiv-
ity of TC variables to most tuning parameters and the common cube-sphere 
dynamical core with E2, suggests that the improvement in TCs from E2 to 

E3 is primarily a result of increased resolution, but the improvements from V1 to V2, which retained the same 
default values of the entrainment and damping parameters, show that improving model physics can still lead to 
better representation of TCs. Future model runs with the final version of E3 at C180 resolution will likely show 
reduced biases in climate variables relative to V2, especially in the TOA radiation imbalance that was corrected 
in subsequent model development, with TC representation perhaps slightly further improved. It may also be pos-
sible to increase the number of TCs, as well as improve the representation of the seasonal cycle of TCs and reduce 
other climate biases, using stochastic parameterizations, as was done by Vidale et al. (2021) for two other GCMs. 
However, our results from V1 and V2 are already sufficient to show that E3 has substantially improved TC rep-
resentation relative to E2, and that it performs in many ways comparably to other GCMs run at similar resolution.

6. Conclusions
In this study, we have explored the characteristics of the 0.5° resolution version of the GISS ModelE3 GCM, in 
two different versions across its development cycle. The representation of TCs is much improved from the CMIP5 
GISS-E2 GCM, with some TCs reaching hurricane intensity and the average storms in E3 having similar wind 
speeds to those of other half-degree GCMs, obviating the need to use a tracker with a wind speed threshold well 
below that in observations. The model continues to show common biases in GCMs, such as having too few TCs, 
especially in the North Atlantic, and lacking storms of major hurricane intensity, although it is better at capturing 
more intense minimum central pressures than E2. The changes made between April 2018 (V1) and March 2019 
(V2) further reduced biases in TC counts, intensities, and lifetimes, while also re-introducing the excess of TCs 
in the North Indian basin during the summer monsoon (though to a much lesser degree than in E2). Our analysis 
of the simulated TCs' composite spatial structures shows that E3 reproduces spatial structures in winds, OLR and 
precipitation comparable to those seen in other models at similar resolution. Our analysis of azimuthally averaged 
TC properties (Figure 10) shows that the thermal structure of the simulated TCs is similar to that in other GCMs 

Figure 16. As in Figure 15 but for RMSE weighted by cosine of latitude, 
normalized by dividing by the inter-quartile range of each row and subtracting 
the row median.
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shown by Moon, Kim, Camargo, Wing, Sobel, et al. (2020), but updrafts, peak precipitation, and radial flows are 
weaker in E3 than in other GCMs for storms with equivalent intensity.

Our various sensitivity tests show that the most important parameter affecting TC numbers and intensity in E3 
is the entrainment rate constant for the strongly entraining plume in the two-plume convection scheme. Increas-
ing this parameter, ϵ2, leads to more TCs. It also introduces greater errors in global mean energy imbalances at 
the surface and top of atmosphere, but experience suggests that these can be largely reduced by adjustments to 
other parameters, such as ice fall speed, without losing the benefits gained by increasing entrainment. We did 
not find divergence damping terms to be important for TCs, in contrast with experiments with the GFDL model 
by Zhao et al. (2012), who found that increasing the divergence damping parameter consistently increased TC 
counts, while increasing cumulus mixing rates caused TC counts to first increase then decrease. Kim et al. (2012) 
found that changing the convection scheme in E2 to a one-plume scheme with an entrainment rate multiplier of 
0.6 (in contrast to the control two-plume experiment with ϵ1 = 0.3 and ϵ2 = 0.6) led to reduced TC counts, but 
subsequently increasing rain reevaporation dramatically increased them. Our results suggest that retaining the 
two-plume scheme and changing the evaporation rate of the more strongly entraining plume instead of the weaker 
one provides a more useful, singular “knob” to optimize TC properties, without the need to change rain evapo-
ration rates. Overall, biases in most climate variables across the sensitivity tests are slightly larger in V2 than in 
V1, but with both versions being snapshots in a years-long process of model development that has not neared its 
end—particularly as there is no C180 version of Model E3 in the CMIP6 ensemble—it would be wrong to draw 
any inference of a trajectory in these errors from just these two versions.

Overall, we can conclude that the E3 version of the GISS GCM, when run at approximately 0.5° resolution, has 
much improved representation of TCs from the previous generation, and is now comparable to other GCMs of 
similar resolution, at least according to the average intensity storms. This indicates that E3 will be useful for 
future studies of TC responses to climate variability and change, whether on its own or as part of multi-model 
ensembles.

Data Availability Statement
The IBTrACS observed TC data are available at https://www.ncdc.noaa.gov/ibtracs/index.php?name=ib-v4-
access. Observational data from the GPCP, CMAP, ICOADS, and CRUTEM4 data sets listed in Table 2 are 
available at https://psl.noaa.gov/data/gridded/index.html. ISCCP data are available at https://isccp.giss.nasa.gov. 
ERA-Interim reanalysis data are available at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/
era-interim. CERES data are available at https://ceres.larc.nasa.gov/data/. OAFLUX data are available at https://
oaflux.whoi.edu/data-access/. Jupyter (Russotto et al., 2021) notebooks used to do the analysis and data files 
necessary to reproduce figures are posted online at https://doi.org/10.5281/zenodo.5542663.
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